ASSESSMENT OF ABNORMALLY LOW TENDERS: A MULTINOMIAL LOGISTIC REGRESSION APPROACH
نویسندگان
چکیده
منابع مشابه
Multinomial logistic regression
Multinomial logistic regression is the extension for the (binary) logistic regression when the categorical dependent outcome has more than two levels. For example, instead of predicting only dead or alive, we may have three groups, namely: dead, lost to follow-up, and alive. In the analysis to follow, a reference group has to be chosen for comparison, the appropriate group would be the alive, i...
متن کاملMultinomial Logistic Regression Ensembles
This article proposes a method for multiclass classification problems using ensembles of multinomial logistic regression models. A multinomial logit model is used as a base classifier in ensembles from random partitions of predictors. The multinomial logit model can be applied to each mutually exclusive subset of the feature space without variable selection. By combining multiple models the pro...
متن کاملUrban Development as a Continuum: A Multinomial Logistic Regression Approach
Urban development is a complex process influenced by a number of driving forces, including spatial planning, topography and urban economics. Identifying these drivers is crucial for the regulation of urban development and the calibration of predictive models. Existing land-use models generally consider urban development as a binary process, through the identification of built versus non-built a...
متن کاملA multinomial logistic regression modeling approach for anomaly intrusion detection
Although researchers have long studied using statistical modeling techniques to detect anomaly intrusion and profile user behavior, the feasibility of applying multinomial logistic regression modeling to predict multi-attack types has not been addressed, and the risk factors associated with individual major attacks remain unclear. To address the gaps, this study used the KDD-cup 1999 data and b...
متن کاملMultinomial Logistic Regression with SPSS
Subjects were engineering majors recruited from a freshman-level engineering class from 2007 through 2010. Data were obtained for 256 students. The outcome variable of interest was retention group: Those who were still active in our engineering program after two years of study were classified as persisters. Those who were no longer in our engineering program were classified as having left in go...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Technological and Economic Development of Economy
سال: 2015
ISSN: 2029-4913,2029-4921
DOI: 10.3846/20294913.2015.1071294